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Abstract. We examine both processes of ionization by electron and heavy-particle impact in spatially uniform plasmas at
rest in the absence of external forces. A singular perturbation analysis is used to study the following physical scenario, in
which thermal relaxation becomes much slower than chemical reactions. First, electron-impact ionization is investigated. The
dynamics of the system rapidly becomes close to a slow dynamics manifold that allows for defining a unique chemical quasi-
equilibrium for two-temperature plasmas and proving that the second law of thermodynamics is satisfied. Then, all ionization
reactions are taken into account simultaneously, leading to a surprising conclusion: the inner layer for short time scale (or
time boundary layer) directly leads to thermal equilibrium. Global thermo-chemical equilibrium is reached within a short
time scale, involving only chemical reactions, even if thermal relaxation through elastic collisions is assumed to be slow.
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INTRODUCTION

Plasmas have a broad field of applications, such as air-breathing hypersonic vehicles (plasma control for scramjet en-
gine), spacecraft atmospheric entries (influence of precursor electrons and prediction of blackout phenomenon), high-
enthalpy wind tunnels (plasmatron, arc-jet, and shock tube facilities), lightning phenomena, discharges at atmospheric
pressure, laboratory nuclear fusion and astrophysics. Graille et al.[3, 4] have derived based on a multiscale Chapman-
Enskog method a unified fluid model for multicomponent plasmas by accounting for thermal non-equilibrium between
the translational energies of the electrons and heavy particles, such as atoms and ions, given their strong mass dispar-
ity. A 3-species plasma was considered: electrons, neutral particles, and ions are denoted by the indices e, n, and i,
respectively. The full mixture of species is denoted by the set of indices S = {e,n, i}, and the heavy particles, by the
set of indices H = {n, i}. The ionization mechanism comprises the following reactions ṙı:

n+ ı̇ 
 i+ e+ ı̇, ı̇ ∈ S.

A recurrent topic in theoretical works on plasmas is the derivation of a modified Saha equation, describing systems
in chemical quasi-equilibrium and thermal non-equilibrium, with the consequent debate regarding which of the forms
of this equation is the correct one to apply (see [1] and references cited therein). In particular, Morro and Romeo
[7] and van de Sanden et al. [8] have derived an equation for the electron-impact ionization reaction based on
techniques issued from thermodynamics of homogeneous systems at equilibrium. This approach is questionable for
plasmas in both thermo-chemical non-equilibrium, seeing the strong coupling between chemical evolution and thermal
exchange. In particular, it is not obvious to choose a suitable set of constraints associated with the optimization of the
thermodynamic functions. In this work, we propose to study both processes of ionization by electron impact, reaction
re, and by heavy-particle impact, reactions rn and ri. We propose to examine systems in chemical quasi-equilibrium
and thermal non-equilibrium by means of a singular perturbation analysis, as opposed to a standard thermodynamic
approach, by extending the work of Massot [6] to thermal non-equilibrium. This analysis is based on a set of differential
equations derived in [3] for the following physical scenario, in which the thermal relaxation becomes much slower than
the chemical reactions. The singular perturbation analysis, consistent with the scale separation associated with this
scenario, is used to study the dynamics of the system in two cases. First, electron-impact ionization is investigated.
The dynamics of the system rapidly becomes close to a slow dynamics manifold that allows for defining a unique
chemical quasi-equilibrium for two-temperature plasmas and proving that the second principle is satisfied. Then, all
ionization reactions are taken into account simultaneously, leading to a surprising conclusion: when ionization through



both electron and heavy-particle impact is considered, the inner layer for a short time scale (or time boundary layer)
directly leads to thermal equilibrium. Thus, the global thermo-chemical equilibrium is reached within a short time
scale, involving only chemical reactions, even if thermal relaxation through elastic collisions is not efficient and slow.
To our knowledge, this approach sheds some new light on this matter and has not been used previously for such
multicomponent reactive plasmas out of thermal equilibrium.

CONSERVATION EQUATIONS

In this section, we review the conservation equations derived in [3] for a spatially uniform plasma at rest in the
absence of external forces. Then, we introduce thermodynamic functions and derive an entropy equation for the
singular perturbation analysis. The derivation is based on a multicomponent Boltzmann equation with conventional
elastic collision operators and reactive collision operators written in terms of transition probabilities [2]. A dimensional
analysis of the Boltzmann equation provides a small parameter for the scale separation, quantity ε = (m0

e/m0
h)1/2, equal

to the square root of the ratio of the electron mass to a reference heavy-particle mass. The Knudsen number is assumed
to scale as this parameter, allowing for a continuum description of the system. The transition probabilities are linked
to differential cross-sections, allowing for a parametrization of the reactive collisions and a suitable choice for the
scaling leading to the Maxwellian reaction regime. In the multiscale Chapman-Enskog method, both the solution and
the collision operators are expanded in a series of the ε parameter, leading to two major results. First, new expressions
are derived for the reaction rate coefficients and zero-order chemical production rates for plasmas in thermal non-
equilibrium. These expressions are compatible with the law of mass action. The species formation energy is associated
with a temperature specific to the ionization reaction considered. Consequently, chemical reactions involving collision
partners with populations distributed at distinct temperatures do not result only in changes for the mixture chemical
composition, but also result in heat exchange between the electrons and heavy particles. Second, the set of derived
conservation equations is compatible with the first and second laws of thermodynamics. Energy and total density are
conserved and the entropy production rate for each type of ionization reaction is shown to be non-negative, involving a
new definition of the Gibbs free energy for plasmas in thermal non-equilibrium. At the electron kinetic time scale (order
ε−2), the electron population thermalizes to a quasi-equilibrium state described by means of a Maxwell-Boltzmann
distribution function at temperature Te = 2

3 meeT
e/kB

f 0
e = ne

(
me

2πkBTe

)3/2

exp
(
− me

2kBTe
ce·ce

)
, (1)

where quantity me stands for the electron mass; eT
e , the electron translational energy; ne, the electron number den-

sity; kB, Boltzmann’s constant; and ce, the electron velocity. In contrast, heavy particles do not exhibit any ensemble
property at this time scale. At the heavy-particle kinetic time scale (order ε−1), the heavy-particle population ther-
malizes to a quasi-equilibrium state described by means of a Maxwell-Boltzmann distribution function at temperature
Th = 2

3 ρheT
h/(nhkB)

f 0
i = ni

(
mi

2πkBTh

)3/2

exp
(
− mi

2kBTh
ci·ci

)
, i ∈ H, (2)

where quantity ni = ρi/mi stands for the number density of species i, mi its mass, ρi its mass density, ci its velocity, eT
h

the heavy-particle translational energy, ρh the heavy-particle mass density, and nh = ∑i∈H ni the heavy-particle number
density. The quasi-equilibrium states given in Eqs. (1) and (2) are described by means of distinct temperatures for the
electrons and heavy particles. At the macroscopic time scale (order ε0), the conservation equations for the mass and
global energy for the electrons and heavy particles are derived as

dtρe = meω
0
e , (3)

dtρi = mi ω
0
i , i ∈ H, (4)

dt(Ee) =−∆E0
h +∆

F
reω

re0
e +∆

F
riω

ri0
e +∆

F
rnω

rn0
e , (5)

dt(Eh) = ∆E0
h−∆

F
reω

re0
e −∆

F
riω

ri0
e −∆

F
rnω

rn0
e . (6)

with the global energies are equal to the sum of the translational and formation energies

Ee = ρeeT
e +ρeU

F
e , Eh = ρheT

h + ∑
j∈H

ρ jU
F
j .



The energy exchange coefficients by heavy-particle impact ionization ∆F
ri = ∆F

rn = me UF
e , and by electron-impact

ionization, ∆F
re = mn UF

n−mi U
F
i allow to obtain the ionization energy from the relation ∆E = ∆F

ri −∆F
re . The zero-

order chemical production rates comprise the contribution of the various chemical reactions ω0
i = ∑ j∈S ω

rj0
i , i, j ∈ S.

These rates satisfy the property ω
ri0
e = ω

ri0
i =−ω

ri0
n , i ∈ S, and can be expressed in terms of the number densities as

ω
ṙı0
e = Kf

ṙı(Th,Tri)nnnı̇−Kb
ṙı(Th,Te,Tri)ninenı̇, ı̇ ∈ S.

The temperature dependence for the direct and reverse rate coefficients is strongly connected with the reaction
mechanism. The ionization energy is provided by the catalyst at a reaction temperature defined as Tre = Te and Tṙı = Th,
ı̇ ∈ H. The translational energy transferred from heavy particles to electrons, is expressed as

∆E0
h = 3

2 nekB(Te−Th)
1
τ
,

where τ is the average collision time at which this energy transfer occurs. Using Eqs. (3) and (4), the total mass
ρ = ρe + ρh, the total charge, Q = qe(ne− ni), with the electron charge qe, and the total energy E = Ee + Eh are
conserved for the mixture, i.e.,

dtρ = 0, (7)
dtQ = 0. (8)
dtE = 0. (9)

The system evolves at constant total density, total charge and total energy. It is important to mention that no further
assumption is made on the internal variables, defined by Woods [9] as the mixture composition and energy distribution
among the species. In addition to the energy, other relevant thermodynamic functions are introduced. First, the reaction-
dependent Gibbs free energy is defined by the relations

ρigi = nikBTi ln
( ni

QT
i (Ti)

)
+

Ti

Trj

ρiU
F
i , i, j ∈ S,

with the translational partition function QT
i (Ti) = (2πmı̇kBTi/h2

P)
3/2, ı̇, j ∈ S, and the temperature Ti = Th, i ∈ H. The

species enthalpy is given by ρihi = 5nikBTi/2 + ρiU
F
i , i ∈ S, and the species entropy by si = (hi−gi)/Ti, i ∈ S. The

mixture entropy reads S = ∑ j∈S ρ js j. For reactive plasmas, Gibbs relation is found to be dtS = ϒth +∑ j∈S ϒ
rj
ch. The

entropy production rate due to thermal non-equilibrium is non-negative ϒth = 3ne(Te−Th)2/(2TeThτ). The entropy
production rates due to chemical reactions ϒ

ri
ch =−g̃ri

e ω
ri0
e /Te−∑ j∈H m jg̃

ri
j ω

ri0
j /Th, i ∈ S, are also non-negative, and

the second law of thermodynamics is thus satisfied.

CHEMICAL QUASI-EQUILIBRIUM FOR PLASMAS IN THERMAL
NON-EQUILIBRIUM

A compact vectorial notation is introduced for the system of Eqs. (3)-(6). The temporal evolution of the conservative
variable U = (ρ t ,Ee,Eh)t , with the mass density vector ρ t = (ρe,ρi,ρn), is described by means of the five-dimensional
dynamical system

dtU = Ω(U), U(0) = U0, (10)

Ω(U) =
Ωch(U)

µ
+Ωth(U), Ωch(U) = ∑

j∈S
ω

rj0
e (U)M∗rj ν

∗, Ωth = ∆E0
e (U)κ. (11)

The reaction vector in the composition space reads ν t = (1,1,−1)∈R3, and the reaction vector in the full composition
and energy space, ν∗t = (ν t ,1,−1) ∈R5. Mass matrices are defined in these two spaces as M = diag(me, mi, mn) and
M∗rj = diag(M,∆F

rj
,∆F

rj
). The source term associated to thermal relaxation Ωth involves the vector κ t = (0,0,0,1,−1).

The total mass density reads ρ = 〈ρ,U 〉, where symbol 〈 , 〉 denotes the euclidian scalar product, and U t =
(1,1,1), the unit vector in R3. The reaction vector space is one-dimensional, R = span{ ν }, and we denote the
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FIGURE 1. The reaction simplex is the line segment AB in the composition space (ρe,ρi,ρn). The total charge is assumed to be
zero. Point A corresponds to a fully neutral mixture, and point B, to a fully ionized mixture. The space orthogonal to the reaction
simplex is spanned by the orthogonal basis (U ,U Orth).

augmented vector space R∗ = span{ ν∗ }. The reaction simplex, where ρ lives, is the one-dimensional affine subspace
R = (ρ0 +n0MR)∩ (0,∞)3, where quantity n0 is a dimensional number density (see figure 1). In addition to ρ , we
define ρOrth = 〈ρ,U Orth〉, where the vector U Orth = (−mi−mn,mn +me,mi−me)t/mn is orthogonal to U as well as
orthogonal to Mν in R3. Then dtρ

Orth = 0 and quantity ρOrth is invariant by the dynamical system (10), as a result of the
total mass and charge conservation Eqs. (7) and (8). In this section, we investigate particular flow conditions for which
the thermal relaxation term Ωth is assumed to be much lower that the chemical relaxation term Ωch, i.e., denoting by µ

a ratio between a chemical time and a thermal relaxation time which is supposed to be small with respect to one, and
a singular perturbation analysis of the dynamics of such a system is carried out in the limit µ → 0.

Ionization by sole electron impact

A simplified case, for which Ω = Ωe = ω
re0
e Meν , is first examined. The chemical mechanism comprises ionization

only by electron impact. The dynamics of the system, in the approximation of small µ parameter, can be decomposed
into an inner temporal layer involving only chemical reactions and an outer temporal layer at chemical quasi-
equilibrium involving only thermal relaxation toward the unique global equilibrium described in the previous section.
We will first tackle the problem of the inner layer for U inn, the typical time of which is denoted by τ = t/µ . It satisfies
the following set of equations:

dτU inn = Ω
e(U inn) = ω

re0
e (U inn)Mre ∗ν∗, U inn(0) = U0. (12)

For this time scale τ , the inner layer is a regular perturbation of the dynamics of the full system at short time scales,
where thermal relaxation does not play any role and fast reactions govern the evolution of the system. Let us emphasize
that, within the inner layer approximation, the translation energy of the heavy particles is conserved dτ(ρheT

h) = 0,
as well as the total energy, so that we also have dτ(E F

e,re) = 0, where the augmented electron energy is given by the
expression E F

e,re = ρeeT
e + ∑i∈S ρiU

F
i . The dynamics of the full original system does not possess additional invariants,

but its dynamics can be approximated, for short time scales, to the one of the inner layer.

Proposition 1. Let us assume ρ0 ∈ (0,∞)3, Ee0 ∈ (0,∞), Eh0 ∈ (0,∞), and under some classical properties that can
be found in [6], there exists a smooth global in time solution of the dynamical system (12). The species densities
are positive and there exists two positive temperatures, T1 and T2, bounding the temperatures: T1 ≤ T inn

e (τ) ≤ T2,
T1 ≤ T inn

h (τ)≤ T2, for all µ .
The system admits an entropic structure, i.e., it can be symmetrized through the use of the entropic variable V inn and

the system satisfies a second principle of thermodynamics, i.e. dτ σ(U inn) is non-positive; it expresses the decrease of



the entropy σ purely due to the chemical reaction.
There exists a unique chemical quasi-equilibrium point U qe = (ρqe,E qe

e ,E qe

h ), where ρqe is in the reaction simplex,

such that the source term vanishes Ωch(U qe) = 0 or equivalently ω
re0
e (U qe) = 0, or equivalently V qe(U qe)∈ (M∗reR∗)⊥.

The quasi-equilibrium composition and energies are smooth function of (ρ0, ρOrth

0 , (ρheT
h)0, (E F

e,re)0) which are
invariant by the dynamical system (12). The linearization of the source term at U qe has non-positive eigenvalues and
exactly one negative real eigenvalue. The mathematical entropy production from chemical reactions admits zero as a
strict maximum at U qe over the reaction simplex.

Finally, the unique chemical quasi-equilibrium is asympotically stable and attracts the long time behavior of the
dynamical system (12).

Following [6], the fast chemical dynamics which leads to chemical quasi-equilibrium provides us with the ability
of partitioning the system (10) into fast and slow variables. The fast variable UFast is simply defined as a projection;
let us denote UFast = (ΠFast)t U , where ΠFast = M∗reν is the projection matrix, up to a metric, onto the reaction vector
space. In fact, in our particular simple case, it is easy to describe the basis of (M∗reR∗)⊥ since it corresponds to the
four invariant variables of our dynamical system: a1 = (U t ,0,0)t for the conservation of mass, a2 = (0,0,0,1,1)t for
the conservation of total energy, a3 = (U Orth,t ,0,0)t for the conservation of ρOrth and a4 = (0,UF

i ,U
F
n ,1,0)t for the

conservation of augmented electron energy. These vectors form a basis which was denoted Π⊥ = [a1,a2,a3,a4] in [6].
Following [6] the orthogonality relations satisfied at chemical quasi-equilibrium by the entropic variable defines, once
a basis of (M∗reR∗)⊥ is chosen, the slows variable which is denoted by U⊥ = (Π⊥)t U . We will then naturally have
R5 = M∗reR∗⊕⊥ span{ ai, i ∈ [1,4] }.. From there, the outer layer can easily be defined:

dtU⊥,out = (Π⊥)t
Ωth(U qe(U⊥,out)), (13)

which can also be rewritten :

dtρ = 0, (14)
dtE = 0, (15)

dtρ
Orth = 0, (16)

dtE
F
e,re =−∆E0

h

(
U qe

(
ρ0,ρ

Orth

0 ,(ρheT
h)0,E

F
e,re

))
, (17)

with the help of the slow variable E F,qe

e,re left invariant by the fast chemical reaction. This last equation describes rather
straightforwardly the fact that the chemical quasi-equilibrium will evolve owing to heat exchange and converge toward
the unique global equilibrium point.

Proposition 2. The outer layer follows a second principle of thermodynamics, that is, dτ σ out ≤ 0, where σ out =
σ(U out). In addition, the global equilibrium point defined in the previous section is asymptotically stable and the
dynamics of the outer layer converges toward this point.

Thus, we can completely characterize through a singular perturbation analysis the dynamical behavior of the system
in the limit of small µ . We do not provide the details of the proof omitted here for two reasons. First the principle
of such an analysis was already provided in [6]; second, it is not the scope of the present contribution to focus on
mathematical background, but rather to focus on the physics of the considered phenomena.

It can then be proved that the dynamics of (10) can be approximated in the following way:

U⊥ = U⊥,out +O(µ),

UFast = UFastqe(U⊥,out)+O(exp(−δ t/µ))+O(µ),

where both the inner layer where U⊥inn = U⊥0 and UFast inn converge toward UFastqe and the outer layer U⊥,out with
UFastqe(U⊥,out) satisfy a second principle of thermodynamics. Such an expansion provides a very precise sense to the
notion of chemical quasi-equilibrium in the framework of thermal non-equilibrium because it describes the outer layer,
that is the slow dynamics, of (10) through thermal relaxation, whereas the reaction operates in temporal boundary
layers associated to the time ratio µ . Let us emphasize that the same study can be conducted in the framework of
the ionization by the sole heavy particles, leading to the same type of results. As a conclusion, for this case of a
single ionization reaction through electron impact, we have been able to identify and characterize the two-temperature
chemical quasi-equilibrium. The purpose of the following subsection is to conduct the same kind of analysis in the
framework of the whole set of three ionization reactions.



Ionization by electron and heavy-particle impact

In this section, we only have to tackle the problem of the inner layer. Starting from the same initial conditions as the
full system, it satisfies the following set of equations: dτU inn = Ω(U inn), U inn(0) = U0, where the chemical source
term is defined by (11). Once again, it represents the dynamics at short time scales where thermal relaxation does not
play any role, but where the three fast reactions govern the evolution of the system. It is important to mention that for
this configuration, we do not have the conservation of translation energy of heavy species dτ(ρheT

h) 6= 0, but we still
have the conservation of total energy.

Proposition 3. Let us assume ρ0 ∈ (0,∞)3, Ee0 ∈ (0,∞), Eh0 ∈ (0,∞), and under some classical properties that can
be found in [6], there exists a smooth global in time solution of the dynamical system (12). The species densities
are positive and there exists two positive temperatures, T1 and T2, bounding the temperatures: T1 ≤ T inn

e (τ) ≤ T2,
T1 ≤ T inn

h (τ)≤ T2.
The system admits an entropic structure, i.e., it can be symmetrized through the use of the entropic variable V inn and

the system satisfies a second principle of thermodynamics, i.e. dτ σ(U inn) is non-positive; it expresses the decrease of
the entropy σ purely due to the chemical reaction.

There exists a unique chemical equilibrium point U
eq

= (ρ eq,E eq
e ,E eq

h ), where ρ eq is in the reaction simplex, such

that the source term vanishes Ωch(U eq) = 0 or equivalently ω
ri0
e (U eq) = 0, for all i ∈ S, or equivalently V eq(U eq) ∈

(M∗riR∗)⊥, for all i ∈ S.
However, this chemical equilibrium satisfies the extra property : T eq

e = T eq

h , i.e., ionization by electron and heavy-
particle impact with different temperatures leads to fast temperature relaxtion and the global chemical and thermal
equilibrium is reached within the inner layer.

Thus the equilibrium composition and energies are smooth functions of (ρ0,ρ
Orth

0 ,E0) which are invariant by the
dynamical system (12). The mathematical entropy production from chemical reactions admits zero as a strict maximum
at U qe over the reaction simplex.

Finally, the unique chemical quasi-equilibrium is asympotically stable and attracts the long time behavior of the
dynamical system (12).

CONCLUSIONS

Based on kinetic theory, we have proposed a unified description of the thermodynamic state of plasmas in thermal
and chemical non-equilibrium, thus extending the work of Woods [9], in which the non-equilibrium effects are treated
separately in terms of internal variables. The full thermodynamic equilibrium state of the system, under well-defined
and natural constraints, can be studied by following the approach used in [2] and [6]. Our results are complementary
to the conservation equations and transport flux expressions derived by [4] for non-homogeneous plasmas in the
presence of external forces, because we provide adequate chemical source terms to be added to the zero-order drift-
diffusion/Euler set of equations or to the first-order drift-diffusion/Navier-Stokes set of equations, in particular, with a
description of the Kolesnikov effect for multi-component plasmas [5].
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